UNIVERSITA DEGLI STUDI DI TRENTO

Department of Information Engineering and Computer Science

Bachelor’s Degree in
Computer Science

FiNnAL DISSERTATION

DePLOYMENT AND ANALYSIS OF A LORAWAN
NETWORK

Supervisor Student

Renato Lo Cigno, Leonardo Maccari Alessandro Sartori

Academic Year 2018/19

Acknowledgments

I wish to dedicate all the effort put into this work to my parents, who have always been so attentive to my
education.

Secondly, my gratitude goes to the closer relatives and their encouragements about my personal interests
and growth.

Lastly, I wish to mention the continuous support received from all my friends, from those who I have known
for a life, to those recently met here in Trento.

Contents

[Abstract

|1 LoRa and the Internet of Things|
.1 TheInternetof Things|

[1.2° Overview of Existing Technologies|
.21 Comparison of Protocols|.
[1.2.2 Additional Protocols: IPv6 Integration].

[[.2.3 _Additional Protocols: Data Transfed

2 LoRa & LoRaWAN;

B Deployment of an Experimental Network|

[3.1 Emglozed Hardware|

3 oRa Transcelvers| e

B23 NetworkBackend,

|§.3 Set UE of the Devices|
..

@ Capacity Analysis|

.1 Achievable Throughput]
4.1.1 Spread Spectrum Modulation| 0 000000000
4.1.2 Frame Format and MAC Layer Overhead|
4.1.3 Verification with Experimental Data]
B2 RadioCoveragel
42.1 MultipathFading| 0 oo
422 UrbanObstacles
423 UrbanRange| o
424 RuralObstacles| 0 0.
425 RuralRangel

|5 Security Considerations
E.l Physical Tampering]

5.3.1 Triggered and Selective RF Jamming|.
b.32 Selective Jamming for a Wormhole Attack].
(.3.3 Downlink Routing Vulnerability]

N O\ U1 O1 = = W

O NN N3

.34 Join-Request Message Replay Attack]. 28

(.35 Join-Accept Message Replay Attack] 28

6 Conclusions| 28
6.1 Related and Future Worksl 29
Bibliography 29
A" Code Listings| 32
A1 ToRaWANENdDeVICel oo ot 32
[A.1.1 lorawan_end_device.py: join a LoORaWAN network and simulate traffic| 32

[A2 PHY Throughput Measurement| 33
A21 phy_throughput.py: record PHY transmission timings| 33

A.2.2 phy plot.py: generate PHY bitratecharts. 34

[A3 MAC Throughput Measurement| 35
A.3.1 mac_throughput.py: record MAC transmission timings|. 35

A32 mac_plot.py: generate MAC throughputcharts] 36

[A.4 Range and Coverage Testing|. 37
A.4.1 range_test_sender.py: dummy packetsender|. 37

A.4.2 range_test_receiver.py: listenerandlogger| 38

Abstract

LoRaWAN and its physical layer counterpart, LoRa, are relatively new protocols in the Low-
Power/Wide-Area Networks (LPWAN) family, an expanding and fundamental sector of the Internet
of Things (IoT) industry.

Currently, an IoT developer or researcher can chose among an incredibly vast range of possibilities
spanning many performance and price ranges, both considering hardware platforms and software
technologies. Communication protocols make no exception: every one of them provides different
features at different computational and power costs, which can lead the choice to be far from trivial,
especially when experimental data and real-world performance are rarely reported on scientific
articles.

This however is justifiable, since new-born and evolving protocols like LoRa initially receive
little attention from the most. Consequently, this thesis proposes to resume and discuss LoRa and
LoRaWAN's characteristics by presenting them in their entirety. A deployment of an experimental
network with commodity hardware will help illustrate their infrastructure and principles of working
by describing, installing, and configuring each component of the system individually on a Raspberry
Pi 3 and on two Pycom LoPy development boards. Thereafter, the previous technical discussion
will be resumed in order to allow a thorough explanation of LoRa’s performance capabilities and
limitations, motivating facts with a presentation of how this innovative modulation operates, and
with calculations applied to data derived from the official Semtech specification.

To go one step further and provide the reader with what LoRa is currently missing — real
world data —, many scripts were developed to serve a number of experiments set in different
locations and situations, leading to results that sometimes consistently diverged from theoretical
expectations. Specifically, LoRa was found to be somewhat underachieving in urban environments:
1 km represented its transmission distance limit out of the 20 km officially believed. Rural settings,
on the other hand, seemed much more promising even if exhaustive enough tests could not be put
in place; a maximum distance of only 4 km, for instance, found a place in this work, but many other
different and interesting experiments were instead included, such as penetrating a hill, embankments
and walls. These last cases in fact, proved that LoRa is highly vulnerable to urban-like obstacles such
as series of walls and buildings, but considerably less so to natural elements like trees, vegetation, or
even masses of terrain spanning from small embankments to kilometer-wide hills.

One last section discusses security, assessing for every protocol component its possible vulnera-
bilities. As many other authors were found to agree, LoORaWAN exposes no obvious security flaw,
provided that basic common-sense precautions are taken. Being a wireless protocol, however, makes
LoRainevitably susceptible to intentional jamming and other Denial-of-Service attacks, some of which
are actually caused by frequent misimplementations of the standard.

Resuming all the analyzed characteristics and collected data, interesting applicability conclusions
can be inferred, particularly on how performance can quickly degrade in improper environments and
how these need to be carefully considered when planning a deployment that exceeds the hundreds of
meters. Moreover, the slight unreliability of transmissions combined with a considerable vulnerability
to DoS attacks make this protocol unsuitable for critical applications such as remote control of
alarm systems. More feasible use cases could be remote reading of environmental or agricultural
sensors (which could also take advantage of LoRa’s minimal power consumption by freely running
on batteries), or in general applications were a disruption of the service would not cause critical
consequences.

1 LoRa and the Internet of Things

The Internet of Things (IoT) is among the roots of the revolution in communications that we are
witnessing today, and LoRa, subject of this thesis, is just one of the innumerable protocols and
technologies supporting its growth.

The goal of this thesis is to analyze the deployment and infrastructure of a LoRa network us-
ing two Pycom’s LoPys transceivers. An overview of which technologies surround LoRa and their
applications will follow in the succeeding paragraphs, after which physical characteristics and in-
frastructure layout will be presented in Chapter [2, while Chapter |4/ will focus on throughput and
range measurements. Chapter (3| dives into the hardware and software section of the experiment,
documenting how the framework was set up and configured. Lastly, in Chapter [5the overall security
of the system is audited and compared to other authors” opinions and findings.

1.1 The Internet of Things

The Internet of Things tightly surrounds our lives, and it is what powers all those “smart objects” we
encounter so often. Technically, “smart” is a prefix used to indicate objects embedded with processors
and sensors, and arranged to exchange data with other machines or humans. This allows not only for
enhanced interactions with them, but also the analysis of collectible data, offering solid advantages
both for users and for companies.

o)

() (®)

Farming & Agriculture Transports & Logistics

Livestock Tracking Fleet Management

ﬂ Internet @

Industries of Th i ngs Smart Buildings

Process Monitoring House Automation

il kg !

Wearables

Smart Cities e
Health Monitoring

Parking Sensors

Figure 1.1: Example applications of the Internet of Things

Although this trend began to gain traction only in the late 2000s, it has actually been around since
the early 70s as a concept, and since 1982 with the first ever connected device, a Coke machine. The
actual birth of IoT, however, is estimated to have happened between 2008 and 2009, when the number
of connected objects surpassed that of people [19].

At that point, many common-use objects started being equipped with Internet connections and
remote control capabilities, letting people gradually coexist and appreciate this technology as part of
their daily lives. With home automation, born in 2000 with the first smart-refrigerator, the growth of

4

IoT reached its peak, and major industries all over the world begun experimenting and investing in its
potential to improve their businesses, increase production processes efficiency, and deliver enhanced
customer services.

As an example of a prensent-day substantial deployment, Trenitalia, the primary Italian railway
service provider, embedded its fleet of nearly 30,000 locomotives with a number of sensors aimed
at preventing failures and maintenance downtime. While improving customer experience, this also
set up a dynamic maintenance model: equipment such as motors, batteries, or brakes were no more
replaced on the basis of scheduled times or ran kilometers, but on the basis of life-cycle models built
from Big Data, boosting reliability and reducing costs of 8% to 10% [17].

In few years IoT even reached the interest of central companies such as Google, which is still
researching to this day on futuristic topics like self-driving cars and advanced smart glasses (Google
Glass).

1.2 Overview of Existing Technologies
The Internet of Things spans such a vast number of different use cases that in the course of its devel-
opment a lot of protocols were born, covering many different communication ranges and providing
various transmission data rates and versatility. Below, the most widespread standards are briefly
presented, in order to let the reader picture what distinguishes LoRa from the other protocols and
their ideal use cases.

As a side note, many of these technologies are classified as Low Power Wide Area Networks
(LPWAN), highlighting their key design characteristics:

e Long Range: IoT devices rarely have real-time needs. Hence, trading off high data rates for
longer ranges is often convenient, especially in rural or urban applications.

e Low Power: low power requirements allow for longer operating times even on cheap battery
packs. 10 or 20 years is not an unusual lifespan for an average LPWAN transceiver.

e Low Cost: affordable costs are reached through the use of license-free frequency bands and
simplified hardware designs, thanks to lightweight protocols.

Moreover, unlike other common types of networks where down-link communications exceed
up-link traffic, in LPWANSs up-link messages are to dominate.

1.2.1 Comparison of Protocols

A Media Access Control (MAC) protocol, along with its physical carrier, is probably the most funda-
mental choice for an IoT project design. It will have the most critical impact on communication range,
data rate, and ultimately on power consumption, an aspect that can become central for battery oper-
ated devices like remote sensors or actuators. In contrast to the ubiquitous ISO/OSI model though, in
IoT the separation between layers is often blurry, and some of the following standards actually span
the entire network stack:

e WiFi is easily the most obvious choice for a huge number of applications: its infrastructure has
a pervasive presence, and the trade-off between data rate, range, and power consumption is
nearly optimal.

¢ Bluetooth and Bluetooth Low Energy (BLE) are almost as ubiquitous as WiFi. BLE especially,
is designed to absorb minimal amounts of power and deliver smaller chunks of data. These
characteristics, plus a reduced range compared to WiFi, make Bluetooth and BLE ideal for
wearable technology.

e Near Field Communication (NFC) is a short range (approx. 4cm) RF technology that enables
simple and safe interactions between devices with a touch. Essentially, it extends the function-
ality of contactless cards to smartphones or RFID readers.

e Cellular Networks (2G/3G/4G), at the price of a considerable power consumption, offer high
data rates of up to 10 Mbps and long ranges (30 - 200 Km). Special implementations of these
technologies aimed at the IoT market exist, and are known under the names of LTE-M and NB
LTE-M.

o ZigBee, like Bluetooth and WiFi, has an already vast and present infrastructure, but it is often
employed in more industrial settings. Despite the low power requirements, it offers high
robustness, scalability, and security. Data rates are somewhat low (20 - 200 kbps), and the range
of operation typically covers a home or building (100 m).

e Z-Wave, an RF communication technology, was primarily designed for small home-automation
products such as lamps or sensors. Since it operates in a sub-1GHz band, it does not suffer from
2.4 GHz interference like WiFi, Bluetooth, or ZigBee. Furthermore, it is considered to be very
scalable and low latency, with data rates up to 100 kbit/s.

o LoRa targets Wide Area Networks (WANSs), offering low-troughput bi-directional connections
scalable to millions of devices. Its long range capabilities (2 - 15 km) and low power require-
ments make this standard suitable for industrial, mobile and smart cities applications. Another
important distinguishing feature is the use of IS frequency bands, which avoid the need to
acquire a license to transmit.

e Sigfox, much like LoRa, provides low-troughput low-power wireless communications via ISM
bands, but with a slightly longer range: 3 - 50 km. Moreover, Sigfox is a business operator;
consequently, to deploy a network one needs to wait for their area to be covered instead of
autonomously setting up their own infrastructure.

1.2.2 Additional Protocols: IPv6 Integration
Home automation and similar use cases made the integration with existing Internet connections a
priority, and several standards operate in this field:

e 6LoWPAN is a key IP-based technology. It offers encapsulation and IPv6 features thanks to
the inclusion of this stack. Clearly, it is independent from frequency bands, physical layer and
communication platform, such as Ethernet, Wi-Fi, or sub-1GHz ISM radio frequencies.

e Thread is arelatively new network protocol based on 6LoOWPAN. It supports full mesh networks
of up to 250 nodes with high levels of authentication and encryption.

1.2.3 Additional Protocols: Data Transfer
For complex systems, a solid way to represent, transfer and manage data is a essential. APIs require
efficient designs, and communications may have authentication or encryption needs.

e Message Queuing Telemetry Transport (MQTT) enables an extremely lightweight publish/-
subscribe messaging infrastructure, which fits very well in low bandwidth applications.

o Extensible Messaging and Presence Protocol (XMPP), unlike MQTT, aims at real time com-
munications, from instant messaging to voice and video calls.

e Constrained Application Protocol (CoAP) presents the peculiar feature of a RESTful design,
allowing for easy integration with the web via HTTP. A client subscribes to a resource and
receives push notifications.

'I1SM bands are portions of the radio spectrum internationally reserved for non commercial usage: Industrial, Scientific,
and Medical purposes.

2 LoRa & LoRaWAN

LoRa and LoRaWAN are, respectively, a wireless modulation technique and its Medium Access
Control (MAC) layer. Their name comes from Long Range, and they are relatively new protocols in
the LPWAN family: in 2012 LoRa made its appearance as a proprietary technology by Semtech, while
LoRaWAN followed in 2014 as an open standard, released by the LoRa Alliance. The latter, though,
is only one of several stacks that can use LoRa as a basis and provide MAC layer features such as
addressing, message integrity checks, encryption/decryption, and support for additional layers.

2.1 LoRaPHY

Being a license-free protocol, LoRa operates in the sub-1GHz ISM frequencies, a set of radio bands
reserved for scientific or other non-commercial purposes. The exact center frequency and bandwidth,
however, vary for each country depending on its specific regulations; these working frequencies are
868 MHz for Europe and 915 MHz for North America, while supported bandwidths are 125 kHz, 250
kHz and, only for North America, 500 kHz.

LoRa’s radio modulation takes advantage of a particular Spread Spectrum technology called
Chirp Spread Spectrum (CSS), which allows a significant sensitivity of up to 20 dB below noise
level. Transmissions can occur on 6 “virtual” channels created using as many spread factors (sweep
rate of the chirp), from SF7 to SF12. Thanks to the Spread Spectrum modulation, these 6 channels
are orthogonal and do not interfere with one another if transmissions overlap, therefore allowing for
simultaneous processing of messages by transceivers.

Achievable data rates and transmission ranges depend on all of the parameters presented above,
and will be measured and discussed in Chapter [4|

2.2 LoRaWAN

Given the large communication range achievable by LoRa, a convenient network configuration is
indeed a star topology, or, more precisely, a star-of-stars topology. End Nodes (ED), like LoRa
sensors and such, are represented by the leaves of the three, and transmit directly to AC-powered
gateways. These Base Stations (BS), in turn, are linked to Network Servers (NS) which coordinate
their transmissions and forward packets to Application Servers (AS), thus forming the "bigger star”.
Application Servers are the other endpoint of the infrastructure, where the actual user applications
reside and are possibly accessed by APIs to provide external services.

In order to provide developers with the choice of trade-offs between power consumption and
message delivery time, LoRa Alliance defined three classes of end nodes:

e Class A is the most power efficient. After each up-link transmission, the end node opens two
short down-link receive windows in which the gateway can communicate with it. The obvious
drawback is that if a message needs to be delivered from the gateway to the end node, the
gateway needs to keep it queued until the next up-link frame is received.

e Class B devices open receive windows at regular times: every 128 seconds all the BSs send a
beacon signal at the same time and assign a time-slot to every ED, in which these will come up
and listen for down-link traffic.

e Class C is nearly continuously open to down-link messages, except when transmitting. It has
the most power absorption, but also the lowest BS-to-ED latency, making it suitable primarily
for AC-powered applications.

Class B, however, is sometimes not implemented, as only classes A and C are mandatory.

=
pe
=
IRE

(@) LoRa (tw)) LoRa Emmm Network E— Application
End Node & Gateway CEmm Server E—1 Server

Figure 2.1: Example infrastructure of a LoRaWAN network, highlighting the ”star-of-stars”
topology. Note how, as shown on the left side, one device might be in reach of multiple gateways.

2.3 Device Activation

Since LoRa’s radio modulation does not provide any security feature, LoRaWAN introduces what is
called Device Activation, a process that lets Network Servers negotiate cryptographic keys with the
end-devices before these are allowed to participate in the network. Although the latest LoRaWAN
specification is version 1.1, this document will contemplate version 1.0.2, because of compatibility
restrictions on the chosen hardware.

Activation can happen with two different procedures, Activation By Personalization (ABP) and
Over The Air Activation (OTAA): the former (also referred to as ”static activation”) requires the
session keys to be explicitly memorized in the end nodes, while the latter (dynamic activation)
derives the Network Session Key and Application Session Key from an Application Key that is
sent through a Join Procedure and uniquely identifies every device.

Specifically, the Network Session Key (NwkSKey) ensures the integrity of messages exchanged
between EDs and NSs with Message Integrity Codes (MICs), while the Application Session Key
(AppSKey) is used to encrypt and decrypt the payload of these packets, granting a private session
with the AS [18].

The mentioned Join Procedure with which these keys are generate simply consists in a Join-Request
message containing the device’s Application Key, its address (DevEUI), and a random DevNonce to
prevent replay attacks. If this request is validated by the NS, it generates a pair of NwkSKey and
AppSKey and sends back a Join-Accept message, with another DevNonce to let the end node generate
its keys.

3 Deployment of an Experimental
Network

In order to compare LoRaWAN's specification with its real world behavior, two LoRaWAN nodes
were acquired by the laboratory, one to act as a gateway and the other as an end device. As shown
in Chapter [2, a LoRaWAN network consists of several components, and their individual setup and
configuration will be described below, after an overview of the chosen hardware.

3.1 Employed Hardware
3.1.1 LoRa Transceivers

Pycom’s LoPyEI was found to be a valid product for its costs and characteristics. Other than a LoRa
interface (a Semtech SX1272 chipset), its core (a ubiquitous ESP32 SoC) supports numerous GPI(ﬂ
pins and WiFi/BLE connectivity, all with ultra low power requirements: deep sleep mode can absorb
as little as 25uA to 5uA, while normal operation requires between 35mA and 100mA of current [15].
Moreover, LoPys have native support for MicroPython (a Python variant for micro-controllers), which
keeps the development of software easy and efficient. Lastly, thanks to an Expansion Board, their
serial (UART) interface can be accessed via USB, and updating or running new scripts on the board
is a matter of few clicks in PyMaksr, a specific development extension made by Pycom to ease various
interaction processes.

3.1.2 Network Backend

This network, being of experimental purpose, was expected to carry very little load, and configuring
separate a server for each component seemed a useless complication. Instead, it was chosen to host
them all on a single device, a Raspberry Pi 3. Its affordable costs and reduced form factor deliver
unexpectedly good performances, with enough computing power to run each piece of software.

3.2 Software Installation and Configuration
The final structure of the network is therefore composed of three devices:

e One LoPy acting as a LoRa ED, asking to join the LoRaWAN network and then transmitting
dummy packets with a sequence number in their payloads.

e One other LoPy acting as a LoRa BS, relaying the received packets to the NS.

e The Raspberry Pi hosting the Network and Application Servers.

=

<<(A))> (((A)» <((T))> *® «") LoRa Interface

LSE;"#} . . B_F_)_)_/___#i._..u ACD ((T)) Wi-Fi Interface
v

R :—nNt kS
ik R Network Server

Application Server

ofiofio

Raspberry Pi

Figure 3.1: Schematic representation of the network, highlighting the separation of roles and their
corresponding host devices.

3.2.1 LoRaWAN End Node

As anticipated, this device will simply send periodical join requests to the network and wait until
one is accepted. At this point it will enter a while loop and symbolically send dummy packets with
a delay between them. The actual code is listed in Appendix and was uploaded to the LoPy via
the aforementioned development plugin PyMakr. As can be seen in lines 11 to 13, the join procedure
requires three authentication parameters:

e dev_eui is the unique device address. It can either be the MAC address or a random hexadecimal
string generated by the Application Server.

1ht’cps:// docs.pycom.io/datasheets/development/lopy/
2General Purpose Input Output

e app_eui, or join_eui, is an unnecessary parameter only required when using an external Join
Server, a scenario which is not contemplated by this work since handled by the AS. When this
parameter is mandatory, as for the LoPy LoRaWAN library, it can be set to a dummy value like
0000000000000000.

e app_key is the 128 bit key introduced in section [2.3|from which the security keys NwkSKey and
AppSKey are derived. As for the dev_eui, it is generated by the AS when registering the device
the first time.

Consequently, before uploading the code to the ED, it was necessary to conclude the installation
process, register the device, and enter the generated keys in the code.

3.2.2 LoRaWAN Gateway / Packet Forwarder

A Base Station relays messages from those devices in its range to a specified Network Server
and vice-versa (see Chapter 2). A basic implementation of a LoORaWAN Gateway (referred to as
packet-forwarder, for its function) is provided by the makers of the development boards, Pycom,
at their public GitHub Repositoryﬁ under the name of lorawan-nano-gateway. While the complete
code is split into three files (main.py, config.py, nanogateway.py), only a portion of config.py is
shown and discussed below, because relevant to the network configuration:

1 |# Address of the Network Server
2 |SERVER = ’loraserver.local’

3 |PORT = 1700

4

5 |# WiFi parameters

6 |WIFI_SSID = ...’

7 |WIFI_PASS = ’...’

8

9 |# European frequency

10 | LORA_FREQUENCY = 868100000

11 |LORA_GW_DR = "SF7BW125" # DR_5
12 |LORA_NODE_DR = 5

Listing 3.1: Relevant lines of the gateway configuration file

In order for the BS to communicate with the NS, it is needed to specify the address at which the server
will respond and, of course, a network where this will be reachable (LoPys have a WiFi chipset but
not a LAN interface). The last three lines are essential to set the right frequency, Spread Factor and
Bandwidth on which the BS will listen on. Normally, Gateways are able to listen an all 8 channel
simultaneously, but this is just an implementation adapted to a Pycom board which cannot, forcing
us to operate on only one DR.

3.2.3 Network Backend

Raspberry Pis, being of widespread use, have been the focus of a project called LoRa Server, aiming
to build an operating system that would aggregate every needed piece of software in a single image.
Unfortunately, at the time of writing, this OS was not found to be stable enough, therefore raising the
need to install and configure components one by one. On the positive side, this approach will ensure
a thorough comprehension of the system by the reader, who will find the interaction between actors
of the network to be more explicit.

Operating System

Among the vast variety of Linux distributions adapted to the ARM architecture, Raspbiarﬁ is the most
favorited. It derives from Debian and is officially supported by the Raspberry Pi Foundation, plus it
is available in different images equipped with more or less software packages, depending on one’s

Shttps://github.com/pycom/pycom-libraries/tree/master/examples/lorawan-nano-gateway
*https://www.raspberrypi.org/downloads/raspbian/

10

needs. As this project requires very little prerequisites it was preferred to use a lightweight headless
image, Raspbian Lite.

The command to flash the . img file to a microSD card (suppose /dev/mmcb1k®) is straightforward,
and takes advantage of dd’s block-by-block copying function:

dd if=raspbian-lite.img of=/dev/mmcblk®

To avoid the set up of a separate workstation with a keyboard and monitor to interact with the
Raspberry Pi, its UART serial interface was used instead. The RPi 3 has two UART interfaces, but
the primary one is used by the Bluetooth chipset; it is possible to either swap these interfaces or to
redirect the system TTY, but the most simple solution is to disable the Bluetooth functionality since it
will not be needed. This action can be carried out with a single command, after mounting the boot
partition in a temporary folder:

mkdir tmp

sudo mount /dev/mmcblkO®pl tmp
sudo echo "dtoverlay=pi3-disable-bt" >> tmp/config.txt

P10
Raspberry Pi Model B+ V1.2
© Raspberry Pi 2014

ETHERNET

USB to TTL adapters

Figure 3.2: Wiring of the RPi and LoPy’s serial interfaces

The Operating System was then ready to be booted and used. Connecting the USB/TTL adapter
powers the device, and the system TTY is accessible via screen or other equivalent tools:

screen /dev/ttyUSBO 115200

Once access to the system terminal was gained, the following steps were executed in order to
prepare the dependencies for the software to be later installed:

sudo raspi-config

sudo apt-get update
sudo apt-get dist-upgrade

sudo apt-get install redis-server postgresql mosquitto mosquitto-clients
python3-pip

11

sudo pip install paho-mqtt

mkdir loraserver
cd loraserver

Gateway Bridge

A Gateway Bridge is a service that converts RF packets received from the Gateway’s packet-forwarder
to a format compatible with Network Servers, which in our case is JSON. Therefore, the interaction
between Base Stations and Network Servers is actually mediated by this bridge, which encapsulates
UDP packets into JSON messages and vice-versa; these JSON messages are then published on an
MQTT channel, where Network Servers can securely exchange packets. As for the rest of components,
the Gateway Bridge was available in a pre-compiled package for the ARMvV7 architecture, letting us
download and extract it instead of compile its source code. The MQTT broker, instead, was already
installed as a dependency.

wget https://artifacts.loraserver.io/downloads/lora-gateway-bridge/lora-gateway-

bridge_2.7.1_linux_armv7.tar.gz
tar -zxf lora-gateway-bridge_2.7.1_linux_armv7.tar.gz

Next, a default configuration was written to the proper file, ensuring that udp_bind was equal to
0.0.0.0:1700, meaning every available NIC on the default port to which the packet-forwarder sends
its data. Alternatively, the UDP server could have been bound to a specific interface address and
different port, with care taken to always match it with the packet-forwarder’s parameters.

./lora-gateway-bridge configfile > lora-gateway-bridge.toml

vim lora-gateway-bridge.toml

A test run of the script printed a number of log messages showing a successful connection to the
MQTT broker, indicating a correct installation.

Network Server

Similarly to the Gateway Bridge, the Network Server only needed to be downloaded and extracted:

wget https://artifacts.loraserver.io/downloads/loraserver/loraserver_2.8.1

_linux_armv7.tar.gz
tar -zxf loraserver_2.8.1_linux_armv7.tar.gz

This time, however, some extra work was necessary to correctly configure the application, as the NS
and AS both need a Redis and PostgreSQL database to run. The Redis database did not need any
set up, while the following instructions were issued to create a dedicated PostgreSQL user called
loraserver, owner of a database named loraserver_ns.

sudo -u postgres psql

create role loraserver with login password ’'...’;
create database loraserver_ns with owner loraserver;
\c loraserver_ns

create extension pg_trgm;

\q

Lastly, the server needed to be instructed on how to reach this table by updating the database
connection string in the default configuration file, generated as before:

./loraserver configfile > loraserver.toml

vim loraserver.toml

In the text editor, the following attributes were filled in:

12

[postgresqgl]
dsn="postgres://loraserver:lorasecret@localhost/loraserver_ns"

[redis]
url="redis://localhost:6379"

[network_server.api]
bind="0.0.0.0:8000"

1
2
3
4
5
6
7
8
A test run of the script confirmed successful connections to the databases and the MQTT broker.

Application Server

Again, the installation was a matter of two trivial commands, followed by the creation of another
dedicated PostgreSQL database named loraserver_as. A default configuration file was generated
in the same manner and updated to match the parameters listed below.

wget https://artifacts.loraserver.io/downloads/lora-app-server/lora-app-server_2
.6.1_linux_armv7.tar.gz
tar -zxf lora-app-server_2.6.1_linux_armv7.tar.gz

sudo -u postgres psql

> create database loraserver_as with owner loraserver;
> \c loraserver_as

> create extension pg_trgm;

> \q

./lora-app-server configfile > lora-app-server.toml
vim lora-app-server.toml

1 | [postgresql]

2 |dsn="postgres://loraserver:lorasecret@localhost/loraserver_as"
3

4 | [redis]

5 |url="redis://localhost:6379"

6

7 | [application_server.api]

8 |bind="0.0.0.0:8001"

9

10 | [application_server.external_api]

11 |bind="0.0.0.0:8080"

12 | jwt_secret="XUm85ptcR5ekeU4cLSpl5UXLeKOR1IHXZ10opZGEAjuVA="

The jwt_secret attribute is required to authenticate users accessing the web API, and was generated
with OpenSSL: openssl rand -base64 32. A correctinstallation and configuration could be verified
with a test run of the script, which exposes a web interface at the device’s address on port 8080, as
per configuration section [application_server.external_api].

3.3 Set Up of the Devices

Once all three services were running, the AS’s interface could be reached on port 8080 through a
browser. Figure[3.3/shows how it presented.

Network Server and Servcice-profile

First, a Network Server was added by clicking on "Network-servers” on the top left, then “Add”, and
filling in the requested information, i.e. a symbolic name and a hostname:port address. Care should

13

@ LoRaServer Q, Search organization, application, gateway or device o @ admin

Network-servers
Applications + CREATE

D i

Gateway-profiles

i

Organizations
D Name Service-profile Description

-3 All users

Rows perpage: 10+ 0-00f0

loraserver ~
* Org. settings
2 Org. users
2= Service-profiles
Er= Device-profiles
@ Gateways

Applications

N Multicast-groups

Figure 3.3: Home page of the LoRaServer web interface.

be taken to match the address and port with those entered in the NS’s configuration file, which in our
case were localhost:8000.

At this point an additional step was required before proceeding with the gateway. LoRa App
Server implements what it defines “service-profiles”, an abstraction of a contract between a user and
the network, specifying which features are available to each organization. Hence, it was necessary to
make the Network Server available to the default organization being used in this test environment,
by adding a new service-profile associated to the newly created NS.

As before, it was a matter of filling in a form with trivial details, reachable from the relative left
column button named ”Service-profiles”.

Gateway

In order to register the LoPy Gateway, its ID had to be retrieved first. Reading through the source
files, the following lines were found to calculate this unique ID, and further down in the code a print
statement indicated that it would be logged at start-up.

Set the Gateway ID to be the first 3 bytes of MAC

address + ’'FFFE’ + last 3 bytes of MAC address

WIFI_MAC = ubinascii.hexlify(machine.unique_id()) .upper()
GATEWAY_ID = WIFI_MAC[:6] + "FFFE" + WIFI_MAC[6:12]

[...]

O NO VT i WN =

self._log("Starting LoRaWAN nano gateway with id: {}", self.id)

In fact, starting up the device and monitoring its serial interface revealed the needed ID, and the
Gateway could be registered with its proper identification code.

1.878] Starting LoRaWAN nano gateway with id: b’240AC4FFFE020984’

End Device, Device-profile, and Application

In order to let the LoPy End Device join the network, an ”Application” had to be created to welcome
the device’s join requests. At this point, for convenience, a “device-profile” was created, aggregating
all the boot features of the device to better manage same-brand nodes. One critical parameter during
the registration of a node is the Device EUI, which represents a unique address. It can either be
randomly generated, or it can be a node’s MAC address itself.

14

3.3.1 Testing

To test the correct operation of the system, all three devices were powered on, and their serial output
monitored for the confirmation that the device successfully joined and started publishing packets.
Furthermore, the web interface started displaying statistics and live data from the node, visible in

Figure

Applications / APP_1 / Devices / LoPy_1 @ DELETE
DETAILS CONFIGURATION KEYS (OTAA) ACTIVATION LIVE DEVICE DATA LIVE LORAWAN FRAMES
® HELP » RESUME & DOWNLOAD B CLEAR
11:30:08 PM uplink ~

aar:

applicationID: "1

applicationName: "APP_1

data: "UEtUICMC

Figure 3.4: Live packet data from the test device.

4 Capacity Analysis

4.1 Achievable Throughput

In Chapter 2} LoRa’s modulation scheme was introduced, and will be here discussed in more depth
in order to formally expound its bitrate and later compare these results with experimental tests.
Although LoRa is a proprietary specification, a document by Semtech [7], was found to explain basic
modulation concepts, and was here used to derive formulas to calculate a supposed throughput.

41.1 Spread Spectrum Modulation

The fundamental concept of LoRa, which is also the principle of Spread Spectrum modulations, is that
spreading the signal over a bandwidth much larger than the frequency content of the initial informa-
tion gives a strong robustness against noise and narrowband interference, such as intentional channel
jamming. Consequently, this high sensitivity allows for long ranges of transmission with minimal
output power. Such a distribution of the signal can be accomplished via numerous techniques, for in-
stance FHSS (Frequency Hopping Spread Spectrum) or DSSS (Direct Sequence Spread Spectrum), where the
transmitter continuously switches from one carrier frequency to another, following a pseudo-random
sequence matched with the receiver.

15

The main drawback of these technologies, however, is that the transceivers need extremely accu-
rate reference clocks in order to keep the devices synchronized, making the needed hardware often
expensive. Continuous synchronization is also a problem for power-constrained devices, which
cannot stay on all the time but need frequent and rapid synchronization mechanisms.

In order to overcome these issues, LoRa derives its modulation from Chirp Spread Spectrum
(CSS), in which the carrier frequency linearly sweeps from the lowest frequency of the band to
the highest (up-chirps) or vice-versa (down-chirps). While still maintaining resistance to in-band
interference, CSS also allows for quick synchronization of the devices, and ensures resistance towards
multi-path fading and Doppler effect as well, making this technology ideal for mobile low-power
applications. Figure reports an example spectrogram analysis of a LoRa transmission, where the
use of up-chirps and down-chirps is clear. Figure[d.1b|instead, shows the relationship between the 6
different Spread Factors, which are fundamentally related to the sweep rate of the chirps, and directly
influence the trade-off between data rate and channel sensitivity. Note, in particular, how this rate
changes exponentially with base 2, e.g. SF12 takes twice the air time of SF11.

169.374 168.387 169 400 168 413 169.426

Frequency(kHz)

Power/frequency (dB/Hz)

10 20 30 40 50 60
Time(ms)

(b) Comparison of the 6 available Spreading Factors [9].
Notably, SF7 (leftmost) requires much less air time than

(a) Waterfall diagram of LoRa modulation SF12 (rightmost), therefore increasing the symbol rate but
showing both up-chirps and down-chirps [12]. losing channel sensitivity.

Figure 4.1: Details of LoRa modulation: CSS chirps (left) and SFs (right).

Information Encoding and Bitrate

As for FHSS and DSSS, information is encoded with frequency hops; every Ts seconds, a symbol is
encoded with a hop to one of the possible 25" bandwidth subdivisions, where SF is the Spreading
Factor just discussed. As can be inferred, since a symbol has 25" different states, it basically carries SF
bits of data. Its aforementioned period Ts, and its reciprocal, symbol rate Rs, can be calculated using
the following formulas:

25F BW

L= 5w Re= o

Where BW is for bandwidth. The modulation bitrate R; can now be determined as the symbol rate
times the number of bits carried per symbol:

BW
Rb:SP'Rs:SF'F

However, to further improve the robustness of the communication, LoRa includes in a packet a
variable number of Forward Error Correction (FEC) bits, referred to as Code Rate (CR). This parameter

16

varies from 1, where for every 4 bits of data 1 additional bit is added, to 4, where for every 4 bits of
data 4 additional ones are calculated. Clearly, when computing the effective bitrate of a transmission,
this overhead needs to be taken into account, reformulating Ry, as:

4 g BV 4
4+CR = 25F 4+CR
Table [4.1] lists the 8 possible combinations of Spreading Factor and Bandwidth, referred to as Data

Rates (DR), that can be used by LoRaWAN. For each of them, modulation bitrate and nominal bitrate
for each Coding Rate have been calculated.

R, =SF-R;-

Configuration Modulation Nominal Bitrate (bit/s)

DR | Modulation | SF | BW (kHz) | Bitrate (bit/s) | CR=1 | CR=2 | CR=3 | CR=4
0 LoRa 12 125 366 292 244 209 183
1 LoRa 11 125 671 537 447 383 335
2 LoRa 10 125 1,220 976 813 697 610
3 LoRa 9 125 2,197 1,757 | 1,468 | 1,255 | 1,098
4 LoRa 8 125 3,906 3,125 | 2,604 | 2,232 | 1,953
5 LoRa 7 125 6,835 5,468 | 4,557 | 3,906 | 3,417
6 LoRa 7 250 13,671 10,937 | 9,114 | 7,812 | 6,835
7 GFSK - 150 - - - - -

Table 4.1: LoRa Data Rates with their configuration and respective bitrates rounded to their integer
part. Note that DR 7 adopts a different modulation technique (Gaussian Frequency Shift Keying,
GFSK) which won'’t be taken into account in this work, due to large differences in the underlying
bitrate calculus.

In conclusion, at the physical layer, LoRa can transmit from a mere 183 bps in a long-range scenario
(SF =12, BW =125 kHz, CR = 4), up to 11 kbps in a short-range situation (SF =7, BW =250, CR = 1).
4.1.2 Frame Format and MAC Layer Overhead

In order to assess LoRaWAN’s performance at the application layer, the packet’s format had to be
taken into account, and is depicted in Figure[4.2)in an exploded view.

_ —_ —_ PP —_
Preamble | PHDR | PHDR_CRC | PHY_Payload | CRC
"""""" 1 1..MP 4
MHDR | MAC_Payload | MIC
"ﬁf;..s] #[4..2]] #[1..0] Te 2z [el T
MType | RFU | Major FHDR | FPort | FRM_Payload
"""""""""" 4 1 2 o 15
DevAddr |FCtrl | FCnt | FOpts
""" i #6 #5 #4 #[3.m5f%"

ADR | ADRACKReq | ACK | FPending | FOptsLen

Figure 4.2: Breakdown of LoORaWAN'’s encapsulation stack.

17

Payload sizes are treated as variables because dependent on the used Data Rate and, possibly, on
regional restrictions. For brevity and because out of scope, packets’ fields won’t be presented here,
but LoRa Alliance’s open documentation contains exhaustive descriptions [18].

For every regional band, [6] reports the maximum MAC_Payload (MP) size in relation to Data Rates
(DRs), and was employed to infer the maximum FRM_Payload (FP) size in Europe by subtracting the
overhead that headers can cause in two possible situations: the best case is when FOpts is empty,
leaving room for 15 more octets, while the worst case is when this field is fully used to exchange
MAC commands. For each DR, table[4.2]lists MPs, FPs, and the calculated throughput for every CR.

DR Size (bytes) Overhead Nominal Throughput (bit/s)
MP \ FP (%) CR=1 \ CR=2 \ CR=3 \ CR=4

0 59 36 - 51 13.6 - 38.9 178 - 252 149 - 210 127 - 180 111.2- 152
1 59 36 - 51 13.6 - 38.9 328 - 464 273 - 386 234 - 331 205 - 288
2 59 36 - 51 13.6 - 38.9 596 - 843 497 - 702 426 - 602 373 -520
3 123 | 100-115 | 6.5-18.7 1,429-1,642 | 1,194-1,373 | 1,020-1,174 | 893-1,024
4 250 | 227 - 242 3.2-9.2 2,838-3,025 | 2,365-2,521 | 2,026-2,161 | 1,774 - 1,888
5 | 250 | 227-242 | 32-9.2 4,965-5293 | 4,138-4,411 | 3,546 -3,781 | 3,102 - 3,304
6 | 250 | 227-242 | 32-9.2 |9928-10,584 | 8,275-8,824 | 7,094 -7,562 | 6,206 - 6,616

Table 4.2: Application level throughput in relation to Data Rate and Coding Rate.

4.1.3 Verification with Experimental Data

In order to evaluate the reliability of the calculated data, effective datarates were measured by writing
two Python scripts that sent a number of dummy packets using each DR, and estimated the bitrate
by dividing the number of sent bytes by the time taken by the execution of the send() instruction.
Although not very precise, this was the only method available from the platform API; the scripts
used to gather performance data, the produced outputs, and how charts were generated, are fully
included in Appendix[A.2land Appendix but a number of snippets will be here reported while
explaining the experiment.

LoRa (PHY) Bitrate

For each of the seven Data Rates, the LoRa radio was initialized with relevant Spreading Factor and
Banduwidth, to later enter a second loop that progressively updated the Coding Rate from 1 to 4. For
each of these configurations, 10 “dummy” packets were sent and their execution time estimated. A
packet consisted of a number of 0x00 bytes equal to its maximum payload size, .i.e. MP bytes + 1
byte of MHDR + 4 bytes of MIC. Listing[d.T|reports the main loop of the script, showing the actual
procedure employed to quantify the bitrate.

1 |for i, dr in enumerate(data_rates):

2 PKT_SIZE = dr[2]

3 print("\n[*] Setting up Data Rate DR{}: SF{}BW{} with payload of {}
bytes".format(i, dr[0], [125, 250, 500]1[dr[1]], PKT_SIZE))

4

5 lora.sf(dr[0])

6 lora.bandwidth(dr[1])

7

8 for cr in [LoRa.CODING_4_5, LoRa.CODING_4_6, LoRa.CODING_4_7,

LoRa.CODING_4_8]:

9 print (" > Coding Rate: {}".format(cr))

10 lora.coding_rate(cr)

11

12 s = socket.socket(socket.AF_LORA, socket.SOCK_RAW)

13 s.setblocking(True) # Set to blocking to measure execution time
14

15 times = []

18

16 for i in range(PKT_N):

17 t_start = time.ticks_us(Q)

18 s.send(bytes ([0x00]*PKT_SIZE))

19 times.append(time.ticks_diff(t_start, time.ticks_us())/1000000)

20

21 _avg, _min, _max = (PKT_SIZE*8)/(sum(times)/PKT_N),
(PKT_SIZE*8)/max(times), (PKT_SIZE*8)/min(times)

22 print (" Throughput (bit/s): Avg {:.2f} - Min {:.2f} - Max
{:.2f}".format(_avg, _min, _max))

23 s.close()

Listing 4.1: Main loop of the LoRa bitrate measurement script

The resulting figures are tabulated in and plotted in Figure 4.3|along with the calculated bitrates.
Considering the scale, deviation between measures can be considered almost negligible (especially
for higher Data Rates) and imputable to software latencies. Moreover, as error bars show, variance is
minimal and therefore the bitrate constant and somewhat stable.

DR Measured Bitrate (bit/s) DR Measured Throughput (bit/s)

CR=1 | CR=2 | CR=3 | CR=4 CR=1 | CR=2 | CR=3 | CR=4
0 183 159 140 125 0 68
1 327 283 249 222 1 81.6
2 729 633 560 501 2 101.6
3 1,505 | 1,279 | 1,115 988 3 229.6
4 | 2869 | 2415 | 2,085 | 1,837 4 484
5 | 5042 | 4245 | 3,675 | 3,233 5 484
6 | 9953 | 839% | 7,261 | 6,388 6 644.8

(a) LoRa bitrate (b) LoRaWAN throughput

Table 4.3: Experimentally measured data.

LoRaWAN (MAC/Application) Throughput

In order to perform the same evaluations at a higher level, the same strategies used for LoRa were
adopted. This time however, the procedure required to use both devices, as the End Device being
tested needed a Gateway with a network backend to connect to and exchange LoRaWAN frames;
hence, a join procedure precedes the main loop of the script in order to let the device be part of this
network.

Listing [4.2reports this main loop, and as for the previous one, a nested loop that crafts and sends
dummy packets can be seen.

1 |for dr in data_rates:

2 print("[*] Testing DR{}".format(dr[0]))

3 PKT_SIZE = dr[1]

4

5 s = socket.socket(socket.AF_LORA, socket.SOCK_RAW)

6 s.setsockopt(socket.SOL_LORA, socket.SO_CONFIRMED, False)
7 s.setsockopt(socket.SOL_LORA, socket.SO_DR, dr[0])

8 s.setblocking (True)

9

10 times = []

11 for i in range (PKT_N):

12 t_start = time.ticks_us(Q)

13 s.send(bytes ([0x00]*PKT_SIZE))

14 times.append(time.ticks_diff(t_start, time.ticks_us())/1000000)
15 time.sleep(0.5)

16

19

H Calculated Bitrate
LORa PHY bltrate —— Measured Bitrate
Data Rate "DRO" Data Rate "DR1"
300 550
275 500
250 i
B 7 450
= | =
8 225 £ 400 4
a a
E 200 E 350 4
= | =
175 300 -
150 4
250 A
125 4
T T T T T T T T
CR1 CR 2 CR 3 CR 4 CR1 CR 2 CR 3 CR 4
Data Rate "DR2" Data Rate "DR3"
1000
9001 1600 -
u u
= 800 =
2 £ 1400 -
3 3
g 700 g
@ ®@ 1200 4
600 -
500 - 1000 A
T T T T T T T T
CR1 CR 2 CR 3 CR 4 CR1 CR 2 CR 3 CR 4
Data Rate "DR4" Data Rate "DR5"
5500 A
3000 A
28001 5000 1
d d
= | =
8 2600 2 4500 4
2 2400 1 2
b= £ 4000
m 2200 A m
2000 4 3500 A
1800 L T T T T T T T T
CR1 CR 2 CR 3 CR 4 CR1 CR 2 CR 3 CR 4
Data Rate "DR6"
11000 4
10000 +
w
=
S 9000
8
[1]
£ 8000 A
5
7000 A
T T T T
CR1 CR 2 CR 3 CR 4

Figure 4.3: Comparison of calculated and measured LoRa bitrate for every DR and CR. Each graph
additionally highlights how FEC overhead impacts performance when using higher CRs.

20

17 _avg, _min, _max = (PKT_SIZE*8)/(sum(times)/PKT_N),
(PKT_SIZE*8)/max(times), (PKT_SIZE*8)/min(times)

18 print (" Min: {:.2f} bit/s - Max: {:.2f} bit/s - Avg: {:.2f}
bit/s". format (

19 _min, _max, _avg

20))

21 s.close()

Listing 4.2: Main loop of the LoRaWAN throughput assessment script

However, this script doesn’t enumerate the four Coding Rates, for the LoRaWAN stack internally
overrides the CR radio setting that could be set as before. More specifically, network functions
are available through sockets, which can only be created after initializing the lora class. This class
directly interfaces with the radio, and among all the modulation parameters to configure, it can be set
to either LoRa.LORA mode or LoRa.LORAWAN mode. Obviously, many parameters are contextual to the
operating mode, meaning that for example, a LoRa raw socket will make no use of parameters such as
device_class or adr (Adaptive Data Rate), as they are a LoRaWAN feature. Conversely, a LoORaWAN
socket won't process raw radio parameters, like power_mode which schedules the sleep/listen cycle,
because handled by the stack itself.

Pycom’s firmware documentation [16], in fact, specifies exactly as said. For the lora.coding -
rate([coding_rate]) method, it states:

Get or set the coding rate in raw LoRa mode (LoRa.LORA). The allowed values are:
LoRa.CODING 4.5 (1), LoRa.CODING 4 6 (2), LoRa.CODING 4_7 (3) and LoRa.CODING_4_8 (4).

This method, as a matter of fact, is specifically affirmed to only work in raw LoRa mode, and no
alternative is provided to operate when in LoRaWAN mode. As a result, any provided Coding Rate
will be ignored when creating the network socket, or better, since this parameter won’t be considered
at all by the class, it can be set and read with no effect, therefore hiding the real in-use value. As a
consequence of this misimplementation, resulting figures could not be attributed to any Coding Rate,
and Table thus lists them in rows with merged columns.

Unfortunately, this was not the only inconsistency found during the process, as Figure 4.4 illus-
trates: measurements were far from close to the calculations, despite numerous changes made to
the environmental circumstances. Many settings were tried, both inside and outside of buildings in
urban and rural areas. Distance between the devices seemed not to influence performance either,
as well as weather or temperature. This fact however, let us conclude that this inconsistency was
most certainly due to other factors, probably to firmware limitations or hardware malfunctions of the
LoPys, hypothesis in fact supported by the insignificant variance of the measures.

One other factor lowering even more the actual reachable performance is the legal restriction of
1% Duty Cycle in the EU868MHz band. This tight restriction highly limits daily transmissible data,
especially if considering that gateways undergo the same rule. For instance, during a day (86,400
seconds), a gateway can transmit or receive on each channel, using theoretical datarates, at most

10,584 (bit/s) - 86,400 (s) - 1% ~ 1 Mb
with DR6 and CR1, or with DR0O and CR4, a mere
111.2 (bit/s) - 86,400 (s) - 1% ~ 11.7Kb

As experimentally proven before, LoPys offer even poorer performances, allowing for daily quotas
between 7 Kb and 68 Kb.

4.2 Radio Coverage

Official LoRa coverage is stated to be more than 10 km, sometimes approximated to 15 km, sometimes
to 20 km. In order to shed more light on these vague declarations, a number of transmission tests
were carried out, sending packets with different radio and environmental settings, and recording

21

LoRaWAN MAC throughput

Therotetical (CR1 to CR4)
10000 1 —— Measured (undefined CR)
8000 1
w
=
2
=~ 6000 -
=1
[=8
=
o
=
2 4000
£
[
2000 4
0 -
T T T T T T T
0 1 2 3 4 5 6

Data Rate

Figure 4.4: Comparison of calculated and measured MAC layer throughput.

corresponding reception rates. Two scripts were developed, one to run on a first LoPy acting as
continuous transmitter, and the other to listen and record data on a second LoPy, positioned in
progressively different conditions for every test; as usual, these scripts are reported in Appendix
[A4 The low number of packets being sent for each DR/CR setting (10) is due to LoRa’s prolonged
transmission times, which if applied to more exhaustive experiments of 50 or 100 messages, would
cause them to last too much time: at the current value of 10 packets per test, almost 300 transmissions
are actuated, and consequently, reception rates are multiples of 10%.

4.2.1 Multipath Fading

Multipath fading occurs when signals reach a receiver via different paths due to reflections (i.e. walls)
at different distances, and their relative magnitude and phases change, possibly interfering with one
another and degrading the signal.

LoRa supposedly offers high resistance against this phenomenon. In order to test this claim,
the two devices were placed far apart in an extended room (approx. 80 m2), surrounded by walls
irregular in shape and covered in many different materials including glass, wood and fabric surfaces.
The outcome of the experiment is shown in Table 4.5 beside a representative map of the room, and
numbers seem to confirm their claim.

10 m
Multipath Fading Test
. ((O)) DRO
/ Receiver <A>
DR1
7
R DR2
,’, DR3
e ’ DR4
£ L7
(<} ," DR5
e ’ DR6
’ L
e CR2 CR3
e ’ Reception rate
(@) .
((A)) Transmitter

Figure 4.5: Reception rates for the multipath fading resistance tests.

22

4.2.2 Urban Obstacles

As urban applications would face many concrete obstacles, a set of transmissions was repeated
multiple times while maintaining the distance between the devices as similar as possible, but varying
the number of walls standing in between. Figure {4.6|illustrates the four studied situations. The
first three are set on one location, while the last one is set on another. This is because the first three
experiments had 100% reception rate for every case (apart from extremely sporadic packet losses that
did non persist across repetitions), so one further test was planned with five walls, three of which
were load-bearing walls (drawn thicker), where LoRa showed the first real losses on the least sensitive
Data Rate, DRY.

@ @A (@)
@At @) ((A))H_H ----- H ----- He

Figure 4.6: Relative placement of walls and transmitters during the “wall penetration” experiment.

Results are not tabulated because very repetitive: the only relevant information is a 10% to 20% packet
loss when using DR7 with any Coding Rate.

In conclusion, LoRa demonstrated to be ideal at least for small deployments involving a contained
number of buildings, such as school campuses or industrial areas.

4.2.3 Urban Range

Secondly, applicability in urban environments was evaluated with distance coverage tests. Figure
illustrates five locations where a receiver was placed to record data (blue pins) sent from a fixed
receiver (red pin). Received packets were then compared to sent ones in order to discover their
progressive reception rates, reported in Figure 4.8|as charts.

- ¥ 1000 ,500 m 4 500 m

"i” 1 Benedelts :
.-. Villaggio Montegr o d opa
"y
......
.

alde
gyrada 537 b

pardi Trak
l. » £ =
.'l.;B .t. A
2e il - [
tesinella] .l... ., 3 \
g S A S
i My 5 % o

5, 1 i _ <]
a;% :_,qs"“f‘afd"s} i 5, .0 ~.:.
%, n '0 b
%, 5P28 [~
L JY
200 m " -+
o [

Figure 4.7: Map of the 5 locations where LoRa’s coverage was tested.

Clearly, urban locations represent a tough environment for low-power radios such as LoRa,
especially if using ISM frequency bands which can be contaminated by many other users.

Interestingly, the difference between 500m and 1000m is indeed more incisive than expected, and is
probably attributable to interferences local to the place of measurement. This leads to the conclusion
that even though LoRa is capable of far higher ranges, urban areas are filled with unexpected,

23

Reception rates in urban environment

100 m 200 m 350m

CR1 CR2 CR3 CR4 CR1 CR2 CR3 CR4 CR1 CR2 CR3 CR4
DRO
DR1
DR2 DR2
DR3
DR4 DR4
DR5

DR6

DR5
DR6

CR1 CR2 CR3 CR4 CR1 CR2 CR3 CR4
1 1

DRO DRO

DR1 DR1

DR2 Reception rate

DR2
DR3

DR4

DR3
DR4

50% 75% 100%
DR5
DR6

DR5
DR6

Figure 4.8: Reception rates of Figure @'s tests.

unpredictable, and possibly intermittent obstacles to radio transmissions. Thus, this phenomenon
must be taken into account when planning such applications, likely requiring to invest in on-field
tests to asses the feasibility of the project.

4.2.4 Rural Obstacles

Rural applications are likely to cross woods or other natural elements. In order to asses their impact
on a typical deployment, two experiments were put in place.

The first of these aimed at simulating small obstacles such as contained irregularities of the land-
scape. Transmitting from an underground room to the garden above, and from another underground
room to the end of an adjacent embankment (both illustrated in Figure [£.9), the impact of 5 and 10
meters of terrain was evaluated to be fairly negligible, as no packets were lost out of almost 300
sent, over various Data Rates and Coding Rates. These results are however not tabulated because
repetitive and without valuable information.

——
- - ((m)

~

$

=

Figure 4.9: Representation of the two underground rooms used for the first “rural obstacles” test.

The second experiment consisted instead in a more concrete simulation, where a number of
transmissions where sent over a real hill of little more than 1 km in width, considered a somewhat
typical size. Figure shows its location, and Figure [£.10b|reports reception rates.

Results are overall promising and in accordance to expectations: consistent packet loss only
occurred when using least sensitive Data Rates (DR3 to DR6), while more sensitive ones (DR0 to DR2)
succeeded almost completely.

24

Hill, 1 km

DRO

DR1

DR2
DR3
DR4
DR5

DR&
CR2 CR3
Reception rate

| i
50% 75% 100%

0% 25%

(b)

Figure 4.10: Experiment setting and results when crossing a 1 km hill.

4.2.5 Rural Range
After witnessing LoRa’s limitations when operating in urban environment, and seeing the promising

results of the ”hill” experiment, radio coverage was tested directly on larger distances, 2 km and 4 km.

The first test was set across a lake, depicted in Figure [£.11a] beside the related results, while Figure

[.12aland . 12| illustrate the 4 km experiment, which crosses mainly agricultural crops or minimally
populated streets, with only some houses at the start of the transmission path. In this case results

were a bit under expectations, but it is probably attributable to the low height at which transceivers
could be placed: at about 1 meter above ground a lot of vegetation was in the way, i.e. crops, bushes,

and trees.
LoRa’s performance is, in conclusion, demonstrated to be considerably better in less contaminated

environments, were obstacles are contained in number and composed of more penetrable elements
like dirt and wood. Reception rates decreased to quite small numbers during the 4 km experiment,
but if using more sensitive Data Rates like DRO, LoRa could be still considered reliable enough to

operate in non-critical applications.

4 Lake, 2 km
= v%"*
S '\ DRO

DR1

DR2

DR3

[
"

n

n

"

u

=

[\
u

=

[

=

=

=

DR4

% " /i
£ Lago®i Fimon /
7/ DR5

\’dizi Tigh o " 7
3 DR6&

CR2 CR3
Reception rate

T T
0% 25% 50% 75% 100%

(b)

Figure 4.11: “Lake” experiment setting and results.

25

Rural, 4 km
B =T DRO 80% 80%
{1
g : DR1 30% 60%
-
) &) DR3
i 24 km :

0%

DR4 0%

[e
e

0%

DR6 0%

-
.
-
-
e DR5
-
L] £
-
[
.
5
.
.
[y
»

CR2

CR3
; Reception rate
")
Stradone: &=
ga\a'*“"e

0% 25% 50%
(a)

(b)

Figure 4.12: Transmission path and results when crossing 4 km of crops and some vegetation

T
75% 100%

5 Security Considerations

After an overview of the objective capabilities of LoRa and LoRaWAN, it is proper to discuss their
potential by also analyzing the level of security they can offer. LoRaWAN networks can be considered
a worthwhile target for attackers for a number of reasons, from frequency bands being free of license,
to the nature of the protocol itself, which due to its long range makes potentially many nodes reachable
to a well positioned attacker.

Unfortunately, being provided with only two LoPy devices, none of the attacks could be tested
and studied to report efficiency data, apart from the first (concerning physical tampering) for which
experiments are currently undergoing.

5.1 Physical Tampering

A LoRa node is composed of a radio module that communicates with a Micro Controller Unit (MCU)

to exchange MAC commands and data. Usually, this happens through a UART or SPI interface
between the two, which don’t currently provide built-in encryption features, therefore exposing the
entire communication to malicious taps. Possible attacks include interception or manipulation of the
payload, or worse, extraction of the encryption keys when exchanged during module initialization.
LoPy boards, specifically, feature an ESP32 MCU communicating with a Semtech SX1276 chipset
through an SPI interface, dangerously exposed on the GPIO headers via pins GPIO5 (CLK), GPIO27
(MOSI) and GPIO19 (MISO), as Figure[5.1|reports from its datasheet [15].

5.2 LoRaPHY

LoRa’s physical layer offers no cryptography features, apart from its modulation’s inherent com-
plexity to be demodulated by a random radio eavesdropper, which is anyway unlikely to notice any
ongoing LoRa transmission given the noise-like shape of the signal. These characteristics, however,

are no coincidence: CSS is in fact of military origins, and therefore specifically designed to appear as
indistinct noise, besides being resistant to interference as discussed earlier. In conclusion, as for the

majority of PHY layer protocols, encryption and authentication are expected to be implemented in
higher layers.

26

AE2 AEL

Antenna Antenna
3.5-5.5YV
1 Reset Vin 28
USB_UART_TX 2 po oNp FEL—— =
USE_UART_RX 3 p1 LoPy 3.3v |28
b | ps Y 53 | 25 l 3.3V is output ONLY
_ 1 Swi ' +3.3V
Bootloader 2¢—o o—l —5 |p3 P22 |24
switch “ SW_Push 6 53
-5 py P21 (23
i~ —L{ LORA_SIGFOX_CLK P20 (22—
Not recommended E _B8 | LORA_SIGFOX_MOSI P19 | 21
for normal use ! g 20 -
:L_ —Z 1 LORA_SIGFOX_MISO P18 ——— ;
10 f pg p17 |19 |
1t po p16 18
Safe mode 12 oy p1g 17 Input only
switch :
. i Ill Jl"_ :Ilq &
SwW2 :
5 o 1% | ANTENNA_SELECT(P12) P13 13- |
+ SW_Push o

Figure 5.1: LoPy electrical schematic, where pins 7 to 9 show the exposed SPI interface.

5.3 LoRaWAN MAC

LoRaWAN's specification thoroughly explains all the encryption procedures and key material excange
processes, which, provided that basic security precautions are adopted, are considered to be sound
by many authors [14,4]. However, these same authors agree on various vulnerabilities to Denial of
Service (DoS) attacks, from obvious radio jamming techniques to more elaborated message replays,
all reported below from [20].

5.3.1 Triggered and Selective RF Jamming

The slow modulation of LoRa causes long packet air times, which in turn give attackers the time to
arrange sophisticated attacks like triggered or selective jamming. In triggered jamming, a jammer
device is only activated when an ongoing LoRa transmission is detected; an experiment in [2]] reported
successful results of 3 packets received out of 600 (0.5%).

This vulnerability provides a good base for more advanced techniques like selective jamming,
where a malicious and well-timed device is able to jam a channel during specific messages, rendering
the attack very efficient and hard to detect, since to a network administrator it will appear just like a
seldom loss of packets of some devices, instead of an extended down of many channels and nodes.
LoRaWAN is vulnerable to this attack because of the unencrypted packet headers, which allow an
attacker to read message information like device address or message type, and act on the basis of a
comparison with a jamming policy.

5.3.2 Selective Jamming for a Wormhole Attack

A device capable to enact the previous attack can be combined with another transceiver to perform
a Wormbhole attack, where one device (close to the destination) selectively jams packets, while the
other (”sniffer”, close to the source) records them. These can then be replayed in a different part of the
network, usually creating false routing information or routing loops to waste the energy of a mesh
network.

In the case of LoRaWAN, given the absence of timing restrictions, packets can be replayed at any
time, provided that no packet with a higher Frame Counter has reached the gateway (which would
then cause the recorded packet to be rejected for having been replayed). This allows for instance
to hide a sensor’s state change, by jamming the new packets while replaying previously recorded
normal-state ones [3].

27

5.3.3 Downlink Routing Vulnerability
Making use of the previous wormhole architecture, false node location information can be created
and used to exclude it from the network.

Basically, when a Network Server needs to communicate with an end device, it knows which
Gateway to utilize by searching its Downlink Routing Path Database, where every device is associated
to the last Gateway which had it in range. A wormhole attack can be enacted to fake a node’s position
to be near another BS out of its range, so that next downlink messages to this node will be transmitted
from this last Gateway and lost.

5.3.4 Join-Request Message Replay Attack

During the Join Procedure described in Section[2.3} it was mentioned that session keys on the Network
Server are generated upon reception of a Join-Request packet, protected against replay attacks by a
random DevNonce, of which NSs should keep history in order to spot reused ones. Unfortunately,
implementation errors and performance compromises are numerous and part of the majority of
firmwares.

For instance, an inadequate server may keep only track of the last 10 DevNonces for every device,
leading to a vulnerability when a node authenticates and 11th time: if the first join-request packet
is sniffed, recorded and replayed after it gets deleted from the server’s history, it effectively fakes a
Join Request, forcing the NS to refresh its keys and putting the End Node in a Denial-of-Service state,
since its packets won’t be recognized anymore by the network [10].

5.3.5 Join-Accept Message Replay Attack

Join-Accept messages do not contain any reference to the Join-Request they were generated for, and
therefore suffer from replayability as well. Similarly to the previous attack, an older packet (but a
Join-Accept in this case) is replayed during a later OTAA authentication, before the real Join-Accept
reaches the requesting node, letting it create a security context that won’t coincide with the server’s,
putting it once again in a DoS state.

6 Conclusions

After comparing LoRa’s theoretical expectations to its real world behavior with numerous experi-
ments, the idea of what can and cannot be achieved with it is now made much clearer.

From the throughput point of view, many applications are immediately ruled out: video streaming
requires at its bare minimum 500 kilobyte/s, which is far above LoRa’s capacity of at most 1.3
kilobyte/s. Audio streaming needs around 30 kilobyte/s, which is still too high even with enough
quality compromises to lower its demand down to LoRa’s capacity, given the 1% Duty Cycle. This last
limitation restricts in general any consistent transfer of data, especially if observing how — combined
with LoRa’s low throughput — it allows no more than one Megabyte of traffic per day.

Feasible applications require the protocol to be used for small and infrequent chunks of data, for
instance to send periodic statistics or sporadic monitoring information. Such implementations could
in addition take huge advantages from LoRa’s derisive power absorption, for example by operating
on batteries and avoid any wiring, besides allowing for placement in rough or wild environments.

Other important considerations involve transmission range, which was found to be highly fluc-
tuating in accordance to environment settings. Urban areas in particular, are filled with unexpected,
unpredictable, and possibly intermittent obstacles to radio transmissions, limiting coverage to less
than 1 km. This phenomenon must be taken into account when planning similar deployments, likely
requiring to invest in on-field tests to asses the feasibility of the project. Rural areas on the other hand,
were found to be much more suitable for employing LoRa: distances of over 4 km could be crossed
by the signal with no issues, and even hills and terrain conformations didn’t disrupt efficiency.

28

Such considerations restrict and clarify even more in which scenarios LoRa is a good solution and
when it is not. Remote reading of sensors, for instance, might be an ideal use case provided that
coverage and interference tests are carried out prior to deployment. Interference tests, in particular,
are essential when operating in ISM bands since they are free and possibly occupied by other users.

Security aspects, in conclusion, rule out many other possible employments. Although cryp-
tographically sound, LoRa is vulnerable to several Denial of Service and Message Replay attacks,
compromising its reliability and employability in critical operations, such as remote control of alarm
systems.

6.1 Related and Future Works

Many related publications were consulted during the writing of this work, beginning with a thesis by
Allahparast [1] who set up a similar network but mainly focused on analyzing MAC layer features
such as Adaptive Data Rate.

Theroretical throughput calculations were found to coincide with the more elaborated ones made
in [13], which also took into consideration packet air times and assessed feasibility of many different
use cases accounting for they typical payload sizes and timing requirements. One other aspect
mentioned in this article is an estimation of the maximum capacity — in terms of scalability — of
LoRaWAN cells and nodes.

When planning the experiments of Chapter [} [8] was the only article found to consider rural
applications, which were in addition tested with different types of antennae and several technical
and other in-depth experiments.

Possible future works include implementation tests of different MAC layer protocols that could
rely on LoRa, maybe enhancing some features to trade off less useful others. For instance, [11] is an
already developed LoRaWAN substitute that aims at maximum reliability of the communication, or
again, the authors of [5] propose an innovative multi-hop protocol to reach even further distances, at
the obvious price of prolonged delivery times.

29

Bibliography

[1] Soroush Allahparast. Development of an open-source gateway and network server for ”Internet
of Things” communications based on LoRaWAN technology, 2017/2018.

[2] Emekcan Aras, GowriSankar Ramachandran, Piers Lawrence, and Danny Hughes. Exploring the
Security Vulnerabilities of LoRa. 2017 3rd IEEE International Conference on Cybernetics (CYBCONF),
June 2017.

[3] Emekcan Aras, Nicolas Small, Gowri Sankar Ramachandran, Stéphane Delbruel, Wouter Joosen,
and Danny Hughes. Selective Jamming of LoRaWAN using Commodity Hardware. MobiQuitous
2017, November 2017.

[4] Ismail Batun, Nuno Pereira, and Mikael Gidlund. Analysis of LoRaWAN v1.1 Security. SMAR-
TOBJECTS '18, June 2018.

[5] Martin Bor, John Vidler, and Utz Roedig. LoRa for the Internet of Things. International Conference
on Embedded Wireless Systems and Networks (EWSN), February 2016.

[6] LoRa Alliance Technical committee. LoORaWAN 1.0.2 Regional Parameters. LoRa Alliance, February
2017.

[7] Semtech Corporation. AN1200.22 LoRa Modulation Basics. Semtech Corporation, May 2015.

[8] Oana Iova, Amy L. Murphy, Gian Pietro Picco, Lorenzo Ghiro, Davide Molteni, Federico Ossi,
and Francesca Cagnacci. LoRa from the City to the Mountains: Exploration of Hardware
and Environmental Factors. International Conference on Embedded Wireless Systems and Networks
(EWSN), February 2017.

[9] Dong-Hoon Kim, Eun-Kyu Lee, and Jibum Kim. Experiencing LoRa Network Establishment on
a Smart Energy Campus Testbed. Sustainability, 11:1917, March 2019.

[10] Jaehyu Kim and JooSeok Song. A Simple and Efficient Replay Attack Prevention Scheme for
LoRaWAN. November 2017.

[11] Link Labs. Symphony Link. https://www.link-labs.com/symphony. Last accessed 12/09/2019.

[12] Link Labs. Whatis LoRa? A Technical Breakdown. https://www.link-labs.com/blog/what-is-lora.
Last accessed 13/09/2019.

[13] Konstantin Mikhaylov, Juha Petdjdjarvi, and Tuomo Héanninen. Analysis of the Capacity and
Scalability of the LoRa Wide Area Network Technology. February 2016.

[14] Thomas Mundt, Alexander Gladisch, Simon Rietschel, Johann Bauer, Johannes Golz, and Simeon
Wiedenmann. General Security Considerations of LoORaWAN Version 1.1 Infrastructures. Mobi-
Wac '18, October 2018.

[15] Pycom. LoPy Datasheet. https://docs.pycom.io/gitbook/assets/specsheets/Pycom_002_Spec-
sheets_LoPy_v2.pdf. Last accessed 13/09/2019.

[16] Pycom. Pycom LoRa APIL https://docs.pycom.io/firmwareapi/pycom/network/lora/. Last ac-
cessed 13/09/2019.

30

[17] SAP. Trenitalia Showcases Railway Innovation. https:/news.sap.com/2016/09/trenitalia-
showcases-railway-innovation-with-sap/. Last accessed 13/09/2019.

[18] N. Sornin (Semtech), M. Luis (Semtech), T. Eirich (IBM), T. Kramp (IBM), and O. Hersent (Actil-
ity). LoRaWAN Specification 1.0.2. LoRa Alliance, July 2016.

[19] HQ Software. The History of IoT. https://hgsoftwarelab.com/about-us/blog/the-history-of-iot-a-
comprehensive-timeline-of-major-events-infographic. Last accessed 13/09/2019.

[20] Eef van Es, Harald Vranken, and Arjen Hommersom. Denial-of-Service Attacks on LoRaWAN.
ARES 2017, August 2018.

31

Appendix A Code Listings

A.1 LoRaWAN End Device

A.11 Jlorawan end device.py: join a LoORaWAN network and simulate traffic

1 | from network import LoRa

2 |import socket, binascii, time

3

4

5 |lora = LoRa(mode=LoRa.LORAWAN, region=LoRa.EU868)

6

7 |lora.add_channel (0, frequency=868100000, dr_min=0, dr_max=5)

8 |lora.add_channel (1, frequency=868100000, dr_min=0, dr_max=5)

9 |lora.add_channel (2, frequency=868100000, dr_min=0, dr_max=5)

10

11 |dev_eui = binascii.unhexlify(’ce@c231fac544c72’)

12 |app_eui = binascii.unhexlify(’0000000000000000)

13 |app_key = binascii.unhexlify(’63a4687blbl762eecab6be334640a772’)

14

15

16 |lora.join(activation=LoRa.0OTAA, auth=(dev_eui, app_eui, app_key), timeout=0,
dr=5)

17 |print(’Joining...")

18

19 |while not lora.has_joined():

20 time.sleep(0.5)

21

22 [for i in range(3, 16):

23 lora.remove_channel (i)

24

25 |s = socket.socket(socket.AF_LORA, socket.SOCK_RAW)

26 |s.setblocking(False)

27

28 |# Set same DR as Gateway

29 |s.setsockopt(socket.SOL_LORA, socket.SO_DR, 5)

30

31 |time.sleep(5)

32

33 |for i in range (200):

34 pkt = b’PKT #’ + bytes([i])

35 print(’Sending:’, pkt)

36 s.send (pkt)

37

38 time.sleep(4)

39

40 rx, port = s.recvfrom(256)

41 if rx:

42 print (’Received: {}, on port: {}’.format(rx, port))

43 time.sleep(6)

32

A.2 PHY Throughput Measurement

A.21 phy throughput.py: record PHY transmission timings

1 | from network import LoRa

2 |import socket, binascii, time

3

4

5 |data_rates = [

6 # (SF, BW, PP)

7 (12, LoRa.BW_125KHZ, 64),

8 (11, LoRa.BW_125KHZ, 64),

9 (10, LoRa.BW_125KHZ, 64),

10 9, LoRa.BW_125KHZ, 128),

11 (8, LoRa.BW_125KHZ, 255),

12 (7, LoRa.BW_125KHZ, 255),

13 (7, LoRa.BW_250KHZ, 255),

14 |]

15

16 |lora = LoRa(mode=LoRa.LORA, region=LoRa.EU868)

17

18 |PKT_N = 10

19 |DR_stats = []

20 |DR_stats_err = []

21

22 |for i, dr in enumerate(data_rates):

23 PKT_SIZE = dr[2]

24 print("\n[*] Setting up Data Rate DR{}: SF{}BW{} with payload of {}
bytes".format(i, dr[0], [125, 250, 500][dr[1]], PKT_SIZE))

25

26 lora.sf(dr[0])

27 lora.bandwidth(dr[1])

28

29 CR_stats = []

30 CR_stats_err = [[], []1]

31

32 for cr in [LoRa.CODING_4_5, LoRa.CODING_4_6, LoRa.CODING_4_7,
LoRa.CODING_4_8]:

33 print (" > Coding Rate: {}".format(cr))

34

35 lora.coding_rate(cr)

36 s = socket.socket(socket.AF_LORA, socket.SOCK_RAW)

37 s.setblocking(True) # Set to blocking to measure execution time

38

39 times = []

40 for i in range(PKT_N):

41 t_start = time.ticks_us(Q)

42 s.send (bytes ([0x00]*PKT_SIZE))

43 times.append(time.ticks_diff(t_start, time.ticks_us())/1000000)

44

45 _avg, _min, _max = (PKT_SIZE*8)/(sum(times)/PKT_N),

(PKT_SIZE*8) /max(times), (PKT_SIZE*8)/min(times)
46 print (" Throughput (bit/s): Avg {:.2f} - Min {:.2f}
{:.2f}".format(_avg, _min, _max))

47 CR_stats.append(_avg)

48 CR_stats_err[0].append(_avg - _min)

49 CR_stats_err[1].append(_max - _avg)

50

51 s.close()

52

33

53 DR_stats.append
54

55

56 |print(DR_stats)

57
58

print(’---")
print (DR_stats_err)

(CR_stats)

DR_stats_err.append (CR_stats_err)

A.2.2 phy plot.py: generate PHY bitrate charts

1 |import numpy as np

2 |import matplotlib.pyplot as plt

3

4

5 |calc_stats = [

6 [292, 244, 209, 183 1],

7 [537, 447, 383, 335 1],

8 [976, 813, 697, 610 1],

9 [1757, 1468, 1255, 1098],

10 [3125, 2604, 2232, 1953],

11 [5468, 4557, 3906, 3417],

12 [10937, 9114, 7812, 6835]

13 |1

14 |DR_stats = [

15 [183.0699, 158.8705, 140.322, 125.6519],

16 [327.2082, 282.7559, 248.9364, 222.3428],

17 [728.5637, 633.0759, 559.7156, 500.6125],

18 [1504.223, 1278.804, 1114.559, 987.7047],

19 [2868.992, 2414.922, 2083.875, 1835.113],

20 [5031.446, 4240.766, 3673.361, 3230.69 1],

21 [9929.534, 8393.418, 7258.546, 6394.041]

22 | 1]

23 |DR_stats_err = [

24 [

25 [0.0123291, 0.01039124, 0.007385254, 0.00554657],
26 [0.1003723, 0.073349, 0.05751038, 0.04634857]
27 1, [

28 [0.03720093, 0.02789307, 0.02166748, 0.01705933],
29 [0.3118896, 0.234467, 0.1820526, 0.1440887]
30 1, I

31 [0.1838989, 0.1417847, 0.1081543, 0.08752441],
32 [1.548584, 1.181702, 0.9139404, 0.733429]
33 1, [

34 [0.4039307, 0.2872314, 0.2218018, 0.1752319],
35 [3.337646, 2.384155, 1.808228, 1.433167]
36 1, [

37 [11.54517, 0.5090332, 0.6162109, 3.762207],

38 [7.277344, 4.263916, 0.1669922, 3.944458]

39 1, [

40 [30.52637, 25.21094, 17.00171, 12.59326],

41 [7.470703, 15.90283, 13.82788, 3.083252]

42 1, [

43 [118.21, 98.27344, 73.67676, 55.93994],

44 [29.06934, 62.40039, 46.44825, 35.93604]

45 1

46 |]

47

48 | fig = plt.figure()

49 | fig, axs = plt.subplots(nrows=4, ncols=2, figsize=(9, 13))
50

51 |for dr in range(7):

52 x =['CR1’, ’CR 2’, CR 3’, ’CR 4’]

34

53 y = DR_stats[dr]

54 yerr = DR_stats_err[dr]

55

56 ax = axs[dr//2, dr%2]

57 ax.plot(x, calc_stats[dr], c='orange’, marker='d’)

58 ax.errorbar(x, y, yerr=yerr, ecolor="r", capsize=5, barsabove=True)

59 ax.set_ylabel ("Bitrate (bit/s)")

60 ax.set_title("Data Rate \"DR" + str(dr) + "\"")

61 ax.grid(True, linestyle=’:")

62

63 |fig.legend([’'Calculated Bitrate’, ’'Measured Bitrate’], loc=’upper center’)

64 |plt.subplots_adjust(top=0.930, bottom=0.039, left=0.088, right=0.974,
hspace=0.315, wspace=0.25)

65 |plt.show()

A.3 MAC Throughput Measurement

A.3.1 mac_throughput.py: record MAC transmission timings

from network import LoRa
import socket, binascii, time

lora = LoRa(mode=LoRa.LORAWAN, region=LoRa.EU868)
dev_eui = binascii.unhexlify(’ce®c231fac544c72’)

app_eui binascii.unhexlify(’0000000000000000°)
9 |app_key = binascii.unhexlify(’63a4687blbl762eecab6be334640a772’)

O NO VL WDN =

11 |lora.add_channel (0, frequency=868100000, dr_min=0, dr_max=6)
12 |lora.add_channel (1, frequency=868100000, dr_min=0, dr_max=6)
13 |lora.add_channel (2, frequency=868100000, dr_min=0, dr_max=6)

15 |lora.join(activation=LoRa.0TAA, auth=(dev_eui, app_eui, app_key), timeout=0,

dr=5)

16

17 |print(’Joining...")

18 |while not lora.has_joined():

19 time.sleep(0.5)

20

21 [for i in range(3, 16):

22 lora.remove_channel (i)

23

24

25 |data_rates = [(®, 51), (1, 51), (2, 51), (3, 115), (4, 242), (5, 242), (6,
242)]

26 |PKT_N = 10

27

28 |DR_stats = []
29 |DR_stats_err = [[], []]

30

31 |for dr in data_rates:

32 print("[*] Testing DR{}".format(dr[0]))

33 PKT_SIZE = dr[1]

34

35 = socket.socket(socket.AF_LORA, socket.SOCK_RAW)

37 .setsockopt (socket.SOL_LORA, socket.SO_DR, dr[0])
38 .setblocking(True)

S

36 s.setsockopt(socket.SOL_LORA, socket.SO_CONFIRMED, False)
s
s

35

39

40 times = []

41 for i in range (PKT_N):

42 t_start = time.ticks_us()

43 s.send(bytes ([0x00]*PKT_SIZE))

44 times.append(time.ticks_diff(t_start, time.ticks_us())/1000000)

45 time.sleep(0.5)

46

47 _avg, _min, _max = PKT_SIZE/(sum(times)/PKT_N), PKT_SIZE/max(times),
PKT_SIZE/min(times)

48 DR_stats.append(_avg)

49 DR_stats_err[0].append(_avg - _min)

50 DR_stats_err[1l].append(_max - _avg)

51

52 print (" Min: {:.2f} byte/s - Max: {:.2f} byte/s - Avg: {:.2f}
byte/s". format (

53 _min, _max, _avg

54))

55

56 s.close()

57

58 |print (DR_stats)

59 |print(’---")

60 |[print(DR_stats_err)

A.3.2 mac_plot.py: generate MAC throughput charts

[x*8 for x in [13.9, 25.6, 46.6, 111.6, 221.7, 387.8, 775.8]]
]
DR_stats = [x*8 for x in [8.4877, 10.26163, 12.78267, 28.73583, 60.46851,
60.46923, 80.59957]]
10 |DR_stats_err = [

1 |import numpy as np

2 |import matplotlib.pyplot as plt

3

4

5 |calc_stats = [

6 [x*8 for x in [31.5, 58, 105.4, 205.3, 378.1, 661.6, 1323 1],
7

8

9

11 [x*8 for x in [0.08555317, 0.06741142, 0.04193115, 0.006668091,
0.02728653, 0.02172852, 0.09063721]]7,

12 [x*8 for x in [0.009656906, 0.6314449, 0.3620882, 0.0008487701,
0.00334549, 0.002700806, 0.01717377]1]

13 |]

14

15

16 |plt.title(’LoRaWAN MAC throughput’, size=14, y=1.05)

17 |plt.xlabel (’Data Rate’)

18 |plt.ylabel (' Throughput (bit/s)’)

19 |plt.fill_between(np.arange(®, 7), calc_stats[0], calc_stats[1],
facecolor="yellow’, label="Therotetical (CR1 to CR4)’)

20 |plt.plot(np.arange(®, 7), calc_stats[0], np.arange(®, 7), calc_stats[1l],
c=’orange’)

21
22 |plt.errorbar(np.arange(®, 7), DR_stats, yerr=DR_stats_err, ecolor="r",
capsize=5, barsabove=True, label="Measured (undefined CR)’)

23 |plt.grid(True, which="both’, linestyle=":’)

24
25 |plt.legend(loc="upper center’)
26 |plt.show()

36

A.4 Range and Coverage Testing

A.41 range test_sender.py: dummy packet sender

O NO Vb WN =

NNNNMNNMNMNNNNNRRR R R R R B 3 3
O ONOOUD WNRQQWOWOOMNOUAE WN RSV

30
31
32
33
34
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

from network import LoRa
import socket, time, pycom

Show idle status
pycom.heartbeat (False)
pycom.rgbled (0x006600)

lora = LoRa(mode=LoRa.LORA, region=LoRa.EU868)

data_rates = [
(SF, BW, PP)
(12, LoRa.BW_125KHZ, 64),
(11, LoRa.BW_125KHZ, 64),
(10, LoRa.BW_125KHZ, 64),
9, LoRa.BW_125KHZ, 128),
(8, LoRa.BW_125KHZ, 255),
(7, LoRa.BW_125KHZ, 255),
(7, LoRa.BW_250KHZ, 255),
]

PKT_N = 10

while True:
print("\n[*] Starting...")

for i, dr in enumerate(data_rates):
PKT_SIZE = dr[2]
print("[*] Setting up Data Rate DR{}: SF{}BW{} with payload of {}
bytes".format(i, dr[0], [125, 250, 500][dr[1]], PKT_SIZE))
pycom.rgbled (0x220000)

lora.sf(dr[0])
lora.bandwidth(dr[1])

for cr in [LoRa.CODING_4_5, LoRa.CODING_4_6, LoRa.CODING_4_7,
LoRa.CODING_4_8]:
print (" > Coding Rate: {}".format(cr))
lora.coding_rate(cr)

s = socket.socket(socket.AF_LORA, socket.SOCK_RAW)
s.setblocking (True)

times = []
print (" Progress: [" + 7 "*(PKT_N) + "] 0%", end='\r’)
for i in range (PKT_N):

s.send(bytes([cr]*PKT_SIZE))

print (" Progress: [{}{}] {:.0f}%".format(
T#*(i+1), ’ ’*(PKT_N-i-1), (i+1)/PKT_N*100
), end="\r’)

Show that a packet was sent
pycom.rgbled (0x000000)
time.sleep(0.1)

pycom.rgbled (0x220000)

37

55
56
57
58
59
60
61
62
63

print(’’)
s.close()

Show idle and give time to update receiver to next DR
pycom.rgbled (0x006600)
input (" > Press Enter to continue...")

pycom.rgbled (0x000022)
input("\n[*] Press Enter to restart...\n'")

A.4.2 range test_receiver.py: listener and logger

O 00 NO VT WN

NNNNNNNNRRRBR R 2B 2 3 32 2
NOoOundh WN R S OO NOUVIEDRD WN =

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

from network import LoRa
import socket, time, ubinascii

lora = LoRa(mode=LoRa.LORA, region=LoRa.EU868, tx_power=14)

data_rates = [

(SF, BW, PP)

(12, LoRa.BW_125KHZ, 64),
(11, LoRa.BW_125KHZ, 64),
(10, LoRa.BW_125KHZ, 64),
9, LoRa.BW_125KHZ, 128),
(8, LoRa.BW_125KHZ, 255),
(7, LoRa.BW_125KHZ, 255),
(7, LoRa.BW_250KHZ, 255),

dr = 0
dr_stats = []

while dr <= 6:
lora.sf(data_rates[dr][0])
lora.bandwidth(data_rates[dr][1])
s = socket.socket(socket.AF_LORA, socket.SOCK_RAW)
s.setblocking(False)

print("[*] Listening on DR{}... (Ctrl-C to advance to next
DR)".format (dr))

cr_stats = [0]%4 # One counter for every CR

try:

while True:
tmp = s.recv(data_rates[dr][2])
if tmp:
Payload is CR number
cr_stats[int(tmp[0]) - 1] += 1
else:
time.sleep(l);
except KeyboardInterrupt:
print(cr_stats)
dr_stats.append(cr_stats)
s.close()
dr += 1

print ("\n=== STATS: ===")
print(dr_stats)

38

	Abstract
	LoRa and the Internet of Things
	The Internet of Things
	Overview of Existing Technologies
	Comparison of Protocols
	Additional Protocols: IPv6 Integration
	Additional Protocols: Data Transfer

	LoRa & LoRaWAN
	LoRa PHY
	LoRaWAN
	Device Activation

	Deployment of an Experimental Network
	Employed Hardware
	LoRa Transceivers
	Network Backend

	Software Installation and Configuration
	LoRaWAN End Node
	LoRaWAN Gateway / Packet Forwarder
	Network Backend

	Set Up of the Devices
	Testing

	Capacity Analysis
	Achievable Throughput
	Spread Spectrum Modulation
	Frame Format and MAC Layer Overhead
	Verification with Experimental Data

	Radio Coverage
	Multipath Fading
	Urban Obstacles
	Urban Range
	Rural Obstacles
	Rural Range

	Security Considerations
	Physical Tampering
	LoRa PHY
	LoRaWAN MAC
	Triggered and Selective RF Jamming
	Selective Jamming for a Wormhole Attack
	Downlink Routing Vulnerability
	Join-Request Message Replay Attack
	Join-Accept Message Replay Attack

	Conclusions
	Related and Future Works

	Bibliography
	Code Listings
	LoRaWAN End Device
	lorawan_end_device.py: join a LoRaWAN network and simulate traffic

	PHY Throughput Measurement
	phy_throughput.py: record PHY transmission timings
	phy_plot.py: generate PHY bitrate charts

	MAC Throughput Measurement
	mac_throughput.py: record MAC transmission timings
	mac_plot.py: generate MAC throughput charts

	Range and Coverage Testing
	range_test_sender.py: dummy packet sender
	range_test_receiver.py: listener and logger

